[Article ID: 01/I/09/0121]

ROOTSTOCK - AN IMPORTANT COMPONENT IN FRUIT PRODUCTION

Novin Chamling*, Bidyarani Devi Senjam and Polu Parameshwar

Department of Pomology and Post-Harvest Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar-736165, West Bengal, India *Corresponding author's: novinchamling354@gmail.com

Abstract

Rootstocks play a vital role in determining the potential of scion in terms of tree canopy, nutritional uptake, yield, fruit quality and tolerance to biotic and abiotic stresses such as pathogens, pests, extreme temperature, water stress, salinity and nutritional stress. Nowadays, use of suitable rootstock species in establishment of fruit orchard is regarded as a means of sustainable production by compensating the possible effects of external stress on the scion. Owing to its positive impact on yield and quality, improved rootstock varieties of fruit crops are developed through breeding programmes throughout the world. Appropriate rootstocks for vigour, precocity and stress management has been identified and put underutilization in several fruit crops including apple, peach, plum, cherry, mango, grapes, citrus, etc.

Introduction

Rootstock is a component of a plant, often an underground part, from which new above-ground growth are often produced. It could also be described as a stem with a well-developed root system, to which a scion bud from another plant is placed. The relationship between rootstock and scion are of more relevance to fruit production technology.

Unfavourable soil and environment conditions like stress, drought, flooding, salinity and contamination of organic pollutants hinder the production of fruits, thus doesn't meet the demands of the rising population. However, to combat this problem in fruit production, an alternative has been introduced i.e., use of appropriate rootstocks, which are capable of reducing the effect of external stresses on the scion (Higgs and Jones, 1991).

The use of rootstocks is most commonly associated with fruiting plants and trees, and is useful for mass propagating many other types of plants that do not breed true from seed, or are particularly vulnerable to disease when grown on their own roots. Rootstock not only influences the size of the tree but also provides other characteristics such as earliness in production, some attributes of disease resistance and resistance to extreme temperatures. Thus, no matter the species or variety used as rootstock, obtained plant will reach, at the adult phase, an ever smaller size than an equivalent plant if it were obtained by seeds (seedling) i.e., through sexual process.

The role of rootstocks and its use in different fruit crops has significant impact on fruit crop production by influencing canopy architecture, nutritional uptake, flowering, yield and fruit quality (Rom and Carlson, 1987). A certain rootstock can be used for a single species or cultivar since different rootstocks confer different properties, such as vigour, fruit size and precocity while others may be selected by their characteristics such as drought resistance, pests and diseases tolerance.

Another desirable feature in a rootstock is its adaptability to environmental conditions viz., tolerance to wet or dry soils, acidity/alkalinity of the soil or high/low air temperature. Rootstocks can be used as interstocks, a small piece inserted between the rootstock and scion to overcome

incompatibility barriers between stock and scion. These trees are known as "three piece" trees (Nimbola *et al.*, 2016).

Characteristics of Rootstocks

- It should produce strong fibrous root system
- It should have vigorous growth habit, healthy and resistant to pest, diseases and frost
- It should be easily propagated by cuttings
- It should have thick bark to hold the bud
- It should be free from suckers
- It should have uniform growth rate
- It should be for the fruiting growth and fruiting characters
- It should tolerate wide range of biotic and abiotic conditions

Description and characteristics of rootstocks in fruit crops

SI. No	Fruits	Rootstocks	Characters
1.	Apple	M9	Dwarfing, Suitable for high density planting
		M4,M7,M106,M24	Semi-dwarf, Resistance to wooly apple aphid
		M-111, M- 104	Semi-vigorous, Drought tolerant and wooly aphid
		Merton-793	Vigorous, Resistant to collar rot, Early fruiting
		M-27 (M13 × M9)	Ultra- dwarf, Suitable for high density planting
2.	Plum	Myrobalan	Vigorous, resistant to crown rot and drought but
			susceptible to oak root fungus
		Marianna	Vigorous, resistant to nematodes, crown gall and oak
			root fungus
		St. Julien	Dwarfing
		Beach plum	Very dwarfing
		Nanking cherry	Very dwarfing
		Brompton	Semi vigorous
3.	Peach	Nemaguard	Vigorous, resistant to root-knot nematode
		Nemared	Resistant to root-knot nematode
		Hansen 536	Extremely vigorous, immune to root-knot nematode,
			drought tolerant, tolerant to calcareous soil
		Cadaman	conditions
			Vigorous, tolerates root asphyxia and iron induced
		Cornerstone	chlorosis, resistant to root- knot nematode
			Tolerant of high pH soil and is resistant to iron
		Viking, Atlas	induced chlorosis
		Fortuna, Controller 5	Vigorous rootstocks
_	_		Dwarfing rootstocks
4.	Pear	Quince	Dwarfing rootstock
_		P. pashia	Vigorous rootstock
5.	Cherry	Mahaleb	Vigorous, cold hardy, resists crown gall, bacterial
			canker and some nematodes
		Mazzard	Vigorous, resistant to root-knot nematodes and oak-
		Call	root fungus
		Colt	Semi-vigorous

SI. No	Fruits	Rootstocks	Characters
		Gisela 5	Semi-dwarf
		Krymsk 6	Semi-dwarf, tolerant to hot climates and also very
			cold hardy
		NEWROOT-1	Dwarfing, promotes early bearing
6.	Walnut	J. hindsii	Resistant to oak root fungus and root-knot nematode
		J. nigra	Tolerant to crown gall, phytophthora and oak root
			fungus
		J. microcarpa	Suitable for high boron, chloride and soil pH
			conditions
		J. sieboldiana	Resistant to phytophthora and cold hardy
7.	Grape	Riparia Clorie	Resistant to phylloxera
		V. rupestris	Resistant to black rot, downy mildew and PM
		St. George	Tolerant to drought
		Ramsey	Tolerant to salinity
		110 Ritcher	Tolerant to drought
		Dogridge	Tolerant to salinity and drought. It can be used in all
			conditions
		Salt Creek	Resistant to phylloxera, tolerant to salinity
		Freedom	Resistant to nematode
8.	Citrus	Flying dragon	Ultra- dwarfing rootstock, resistance to phytopthora
			root rot, nematode but highly susceptible to iron
			chlorosis
		Poncirus trifoliata	Dwarfing, resistant to phytopthora and nematodes,
		Citaria i a calabini	susceptible to tristeza virus
		Citrus jambhiri	High yield, vigour, suitable for deep soils, highly
		Citrus reshni	susceptible to nematode and phytopthora
		Citrus Iimonia	Salinity tolerant High yield and vigour, suitable for deep soils
		Citrus Ilmonia Citrus karna	High vigour and yield
		Citrus limettoides	High vigour and yield for sweet orange and lime
		C. pennivesiculata	High vigour and yield for sweet orange and lime
9.	Mango	Kurukkan	Salt resistant and polyembryonic
J.	Widiigo	Moovandan	Salt resistant
		Nekkare	Salt resistant
		Olour	Dwarfing rootstock, salt tolerant
		Vellaicolumban	Dwarfing rootstock
		Gomera 1	Salt tolerant
10.	Guava	P. friedrichstalianum	Dwarfing, resistant to wilt
		P. pumilum	Dwarfing
		· ·	
		P. cattleianum var.	Resistant to wilt

Source: Anon, 2020; De and Patel, 2019; Reighard et al., 2014

Conclusion

Rootstocks provide an efficient way of raising uniform trees capable of bearing good quality fruits with high yield even under unfavourable conditions like drought, salinity, heavy metal toxicity, pests

and disease incidence, etc. However, further study regarding the rootstock-scion relationship is necessary to aid in breeding programmes and selection of potential rootstocks in future.

Reference

- Anonymous (2020) Rootstocks for cherry trees.
 - https://www.orangepippintrees.com/articles/fruit-tree-advice/rootstocks-for-cherry-trees.
- Dey L C and Patel R (2019) Importance of citrus rootstocks. DBT workshop on 'Citrus decline and its management in NEH Region, ICAR RC NEH Region, Sikkim Centre, Tadong.
- Higgs K H and Jones H G (1991) Water relations and cropping of apple cultivars on a dwarfing rootstock in response to imposed drought. *J Hortic Sci* 66: 367-379
- Nimbolkar P K, Awachare C, Reddy Y T N, Chander S and Hussain F (2016) Role of rootstocks in fruit production—A review. *J Agric Eng Food Technol* 3(3): 183-188.
- Reighard G L, Ouellette D, Rauh B and Bridges W (2014) New rootstock cultivars for peach influence growth, yield and fruit quality. *Acta Hortic* 1058: 517-522.
- Rom R C and Carlson R F (1987) Rootstocks for fruit crops. New York, Wiley and Sons, p. 494.